
First steps in using BBC micro:bit for control and physical computing

Adrian Oldknow adrian@ccite.org 16th January 2017

0. Writing your first program (please skip this section if you are already happy how to do it!)

The image above shows the main elements of the BBC micro:bit. One million of these were distributed up to

July 2016 to maintained schools in the UK to be given free to all 11-year old students. Since then they have

been on general sale for around £15, including a battery case and USB connecting cable. One of the aims of

the BBC digital literacy campaign has been to help people understand something now generally called the

`Internet of Things’ (IoT for short). Many modern products use the adjective `smart’ to mean that they

include a computing device to control it, and probably one which can exchange data with other devices

wirelessly. Have a close look at the kinds of things this little device has built in to it. In order to make it work

you need to connect a power source such as 2 AAA batteries. What is missing is an On/Off switch! As soon

as the micro:bit has power it runs whatever program was loaded into it most recently. When you disconnect

the power, the micro:bit continues to store the program – and will run it again as soon as you apply power.

So the first thing we need to find about is the simplest way to get a program to run on it. There are several

ways to do this. We will start off with the programming environment developed by Microsoft Research,

called the Programming Experience Toolkit, or PXT for short: https://pxt.microbit.org/.

If this is the first time you have

used the PXT editor, then you will

have a blank program area.

Otherwise it will open the last

program you built. In which case

click on `Projects’ and select

`New Project’.

mailto:adrian@ccite.org
https://www.pxt.io/about
https://pxt.microbit.org/

The image of the micro:bit at the top left is a very clever

animated device, called an `emulator’, which allows you to

test programs without even having your own micro:bit! The

coloured words in the next column are links to the various

building blocks from which you will build your program. If you

click on one of these, such as `Basic’ you will see a collection

of blocks from which you select one and drag it to the

programming window on the right. Let’s try the `show

number’ block. When you click on it a yellow border shows

up, which means you have started to run your simple

program. You should see that the emulator shows the

number you have chosen to display. There will also be some

explanation about this block

called `showNumber’. If you click

on this you will open up a new

tab with a page of information

from the reference manual,

including an example. Try

deleting the zero and entering

your own number into the `show number’ block. I

have entered `256’, and you will see that the

display scrolls to show each digit in turn, and the

program ends with the `6’ on the display.

See what happens if you enter something which is

not a whole number like `3.14’ or `two’. It would be a good idea,

now that you have started to build a program, to give it a name

like `first steps’. Use `Projects’ and then `Rename project’. Close

the dialog to get back to the editor.

Most programs do something repeatedly, and use what is called a

`loop’. The simplest kind of loop is the `forever’ loop.

Use the `Basic’ menu and drag in a `forever’ block and a `pause’ block. Place the `show number’ and `pause’

blocks within the `jaws’ of the `forever’ loop. From the `Math’ menu drag in a `pick random’ block and place

it inside the `show number’ block. Edit the number and change it from 4 to 9. Edit the number in the

`pause’ block and change it from 100 to 1000. So the new program will continually generate a random

whole number (called an `integer’) between 0 and 9, display it and wait 1000 milliseconds (i.e. 1 second)

before doing it all again. Check that this is what the emulator does.

https://pxt.microbit.org/reference/basic/show-number

Now explore what happens when you click on `JavaScript’.

This is exactly the same program but written in a text,

rather than a graphical, format. It’s not as pretty, but it is

much more convenient to use for longer programs,

especially if you want to print them out. Click on `Blocks’

to swap back to the graphical version. Now we are ready

to send our working program to a micro:bit. This has two stages. The first is for the PXT editor to create a

version of the program which the micro:bit can understand. This converts all the lines of the JavaScript

program using a number code in what is called `base 16’ or `hex’ for short. The resulting hex file is stored on

your computer, usually in a folder called something like `Downloads’. The second stage is to connect a

micro:bit to the computer with a USB cable and to transfer the file to it. Once you have got used to this you

should find the whole business of writing a program on a computer, and loading it into the micro:bit, pretty

painless! Click on `Download’. This

opens a window at the bottom of the

web-browser display which shows you

that a file is being saved.

It is called `microbit-First-steps.hex’. If

you right-click on this name you can select

the option to `Show in Folder’. This

opens your `Downloads’ folder. You

should see your file at the top with the

current date and time. My version has a

size of 561 Kb. If you now plug your

micro:bit into the USB port of your

computer, after a few seconds another

window will open showing it as an

external storage device with a name

something like `MICROBIT (D:)’.

If you right-click on your hex file, you will

have the option to `Send to >’ and a list of

possible locations. Select `MICROBIT (D:)’

and a little dialogue box opens to show that

the file is being transferred. You will also

see an LED on the back of the micro:bit flash while this happens. As soon as the transfer is complete your

program should start to run. At the moment the micro:bit is being powered through the USB cable from the

computer. If you disconnect it, you can then attach a

battery pack and the program will happily start to run – at

least until you disconnect the power.

If you are curious you can open your hex file with

something like `Notepad’ and see that it does indeed just

contain a load of numbers using the characters

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Once you have created a hex file you can send it to your friends. They can

either send it to their own micro:bits, or open it in the PXT editor. Try it now.

1. Making the micro:bit display respond to its buttons and sensors

The BBC micro:bit is quite a different animal from the Raspberry Pi. The RPi has to have input (keyboard and

mouse) and output (TV or monitor) devices connected in order to be useable. The micro:bit has its own

input (buttons and sensors) and output (the 25 LED display) devices built in. It can also have other ones

attached, such as buzzers, speakers and electronic components. In this section you will learn how. We will

start with the simple inputs – the A and B buttons. The micro:bit has a very simple way of accepting inputs

from its buttons and using them to control the pattern of LEDs illuminated on the display. Start a New

program. We will build a simple 4-state device which tells the micro:bit what to display

(a) when no buttons are pressed:

(b) when button A is pressed:

(c) when button B is pressed:

(d) when both buttons A and B are pressed.

Here is the complete program:

The `show leds’ blocks are `Basic’ commands. The `if’ blocks are `Logic’ commands. The `button’ blocks are

`Input’ commands. By default, the led display will be blank unless either or both of the buttons are pressed.

See what happens to the emulator when you run the program. Note that it creates an extra A+B button!

When you are happy, give your program a name like `Push buttons’. Download it as the hex file: `microbit-

Push-buttons.hex’ and transfer it to your micro:bit. Test that the right things happen when you press any or

all of the buttons. Now you have the basic idea we can see how the micro:bit can make decisions about

what to display based on its own sensors. The first one we will try is the Light sensor. This is isn’t shown on

the actual micro:bit, but it uses a clever way to detect light intensity falling on the 25 led display. (The

technical details are here.) Start a new program and build the following one. The `light level’ block is in the

https://lancaster-university.github.io/microbit-docs/extras/light-sensing/

`Input’ menu. This returns a value between 0 and 255. You can simulate this by using your mouse to pull

the yellow `blind’ up and down over the simulated sensor at the top left of the emulator. Because the result

can have up to three digits, the display will scroll to show you the simulated reading.

Give your program a title such as `Light level’. Download it as the `microbit-Light-level.hex’ file and transfer

it to your micro:bit. Try moving it closer and further from a light source, or shine a torch at the display.

We will now use a little trick to make the `light level’ easier to work with. Find the `divide’ block in the

`Math’ menu and insert it in the `show number’ block. Edit the number to the right of the `÷’ sign to read

64. If you use a calculator to do a divide operation you will usually get a decimal point in the answer. Try

dividing 156 by 64 and see what you get. Division on the micro:bit works rather differently. You only get the

whole number (aka `integer’) part of the result. Sometimes this operation is called `integer divide’. Test the

resulting program with the emulator. Now we see that a light level of 156 produces the single digit `2’ on

the display. What are the only possible numbers this program can display?

Don’t bother saving, downloading and transferring

(aka `flashing’) the current program to your micro:bit.

We can now merge this idea with our 4-state program,

replacing the `button’ test with a `light level’ test. We

will now introduce the idea of a `variable’. In the

`Variables’ menu there is a block called `Make a

Variable’ which allows you to create a new one. Click on

`Projects’ and re-open your `Push buttons’ program (or create

a new one if you can’t find it). Insert a new `set’ block from

the `Variables’ menu, select `brightness’ instead of `item’ as

the variable name and insert the `light level’ and `divide’

blocks as shown. In each of the `if’ blocks replace the `button’

block with an `equals’ block from the `Logic’ menu. Insert the

variable name `brightness’ and edit the test value to 1, 2 and 3

in turn.

The completed

program is shown

here. Check it works

using the emulator to

simulate changes in

light intensity.

But the logic is all

wrong!!! We need

more leds when it gets

darker, not lighter!

So can you edit the

program to fix it? Now

you have not only

created a program, but

also detected and

corrected an error.

That process is called `debugging’. Save your program and transfer it to your micro:bit to check it now works

properly. Move the micro:bit so that the light-levels change and check it works OK.

Congratulations. You have built your first Internet of Things device, using the light sensor to switch on and

off the leds in the display. That’s how most current cars have automatic systems to switch their lights on

and off as the light level changes. You could attach your micro:bit to the back of your bike’s saddle to create

a smart rear lamp. I have saved my version of the corrected program on Dropbox with this link. Check you

can copy this program to your computer, open it with the PXT editor and transfer it to your micro:bit.

The micro:bit has several sensors other than

temperature or light which can be used to detect

motion. These include accelerometers and

magnetometers which can be used to detect

gestures, collisions and direction. The `rotation’

block from the `Input More’ menu can measure

the `pitch’ (forward and back) and `roll’ (side to

side) motion of the micro:bit. This program turns

the micro:bit into a spirit-level.

So how does the program work? It continuously

checks the angle being returned by the `pitch’

sensor. Dividing this angle by 50 returns a value for the variable `item’ which you could read using the `show

number’ command from the Basic block. This is a single digit signed number between -4 and +4. We are just

going to test whether this is a positive, negative or zero number. If it’s zero we display the letter `L’ for

Level, if it’s negative we display `D’ for Down, and if it’s positive we display `U’ for Up. Then we have a slight

pause before doing the job again. You can test this with on screen emulator by clicking the mouse

somewhere inside the image of the micro:bit at the top left. Check that you can get it to display each one of

the 3 letters. So this is another way to use the micro:bit’s built-in sensors to control an output. It simulates

the way a smart-phone or tablet senses the orientation of the way in which you are holding the device – and

https://www.dropbox.com/s/6qldqk5jy54fsyb/microbit-Light-sensed-LEDs.hex?dl=0

so is able always to display text in the right direction for you to read clearly. The last example in this section

turns the micro:bit into another kind of instrument – a thermometer with a difference. We will use the

variable `MinTemp’ to record the lowest temperature reached while the micro:bit is awake and sending.

This starts with a large number stored in it. Every time the temperature sensor records a value lower than

the lowest recorded so far, we replace the value stored in the variable `MinTemp’ with the current one,

saved in `item’. You can test the program with the emulator by sliding the simulated thermometer. Once

you have transferred the program to the micro:bit, you can detach it, attach batteries and place the

micro:bit in the fridge. When I take mine out after half an hour I find the lowest value was 6°C. So my nice

bottle of white wine is probably just a bit too cold!

Can you edit the program to record the maximum temperature reached? I suspect it Will not do a micro:bit

much good by testing this in a kitchen oven! Can you develop a program which displays the current

temperature while also storing the maximum and minimum temperatures reached? Make it display the

maximum temperature when the A button is pressed and the minimum when the B button is pressed. Place

your micro:bit in a plastic bag and leave it outside for 24 hours to check the max and min temeratures.

2. Connecting external devices

One of the micro:bit menus is called `Music’, but there is no speaker on the micro:bit itself.

When you try to run the simple program to play a single note, the emulator suggests that you need to

connect `pin0’ and `GND’ to a headphone or speaker. In the photo below, the bottom left shows a simple

black circular buzzer attached to the micro:bit’s Pin0 with a green cable and crocodile clips, and to its GND

pin with a black cable. You could use the crocodile clips to attach to the separate sections of the jack plug of

headphones or speakers.

For £2.25 you can buy a ready-made jack plug

adaptor from `Handy Little Modules’ or for £5

you can buy the Kitronik M1 power adaptor

(bottom right) which has a built in buzzer

connected to the right pins. So now you can

build a range of alarms to display warning signs

on the led array as well, as making noises.

Could you use the temperature sensor to sound an alarm and flash a light if the temperature in the room

gets too high, or too cold? This is, of course, the principle used by a thermostat to control the central

heating in a home, or the climate control in many modern cars.

As well as external outputs, such as a buzzer, or bright/coloured LEDs, you can also attach external inputs

such as sensors. A very nice project to build an automated plant watering system is described here. This

uses an external moisture sensor to detect the dampness of the soil in a plant pot. It could be used to sound

an alarm so that you are prompted to water the plant. But, better still, the micro:bit could turn on a pump

to water the plant automatically. The water sensor costs £3 and the pump costs £5. More tutorials and

suggestions are on this site.

Let’s test the water sensor. The red lead is connected to

3V, the black to GND and the blue to pin P0. Here is the

simple code to check it works:

http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html
http://microbit-learning.co.uk/bbc-microbit-plant-watering/
http://microbit-accessories.co.uk/shop/sensor/water-sensor/
http://microbit-accessories.co.uk/shop/output/water-pump/
http://microbit-learning.co.uk/

3. Designing a working system – smart lighting

In this section, we will simulate working like an electronic systems designer. We will just use the micro:bit as

the smart control device. We will design a system in which a dimmable light emitting diode (LED) responds

to the amount of light falling on another electronic component called a light dependent resistor (LDR). This

simulates the automatic lighting system in a car or house. These components are widely available and quite

cheap. A very convenient resource for this kind of activity is ready made kit, such at the Kitronik’s

`Inventor’s Kit for the BBC micro:bit’ costing £25. This consists of an `edge connector’ into which you plug

your micro:bit. This is connected to two parallel rows of pins which you use to attach wires. This is stuck on

a base board along with an object called a `bread-board- with many holes in to allow you to place

components, like an LED, and connecting wires. The photograph below shows page 24 of the tutorial with

the circuit diagram we need to build. On the right is the assembled Inventor’s kit with the programmed

micro:bit plugged into the edge connector, with the battery boxed tucked away underneath. The coloured

leads slip over the I/O pins connected to the micro:bit through the edge-connector and plug into holes in the

bread board. We are using three I/O pins, 0, 1 and 2. Also the GND and +3V power pins. The first test

components are a push switch, a potentiometer (variable resistor), a red LED and a 47Ω ohm resistor.

In this first version we will use the potentiometer as a manual dimmer-switch, like we used the A and B

buttons in earliest example.

Here is the program written in the current Microsoft PXT editor. I

have called it `Dimmer switch’. We use a variable called `light

state’ to tell whether the LED is switched on (1) or off (0). So the

first bit of code just tells the micro:bit to use the push switch

attached to pin P0 as a `flip-flop’ to change the state of the LED.

https://www.kitronik.co.uk/5603-inventors-kit-for-the-bbc-microbit.html

Now is the time to have a look at the `Advanced’ blocks

menu. The one that we need is called `Pins’. This allows

you to read values from digital (e.g. a switch) or analog

(e.g. a potentiometer) inputs and to send out signals to

digital and analog devices.

The second block of the program uses the potentiometer attached to the analog pin P1 to control the

brightness of the LED connected to the analog pin P2. When you have transferred the program to the

micro:bit you can use the push button to switch the LED on and off. You can turn the spindle attached to the

potentiometer to control the brightness of the

LED.

Once your program has been tested and works

OK, you can replace the potentiometer with a

light dependent resistor. The program doesn’t

need any changes. But we no longer need the

lead to connect the 3V to the potentiometer.

The LDR is just connected to GND and P1.

Now we have developed our working system

we can dispense with the bread-board and

make a bespoke circuit. I have used 3

crocodile clip leads. The black lead connects

GND to one leg of the LDR and to the negative

leg of the LED. One leg of the resistor is

twisted round the positive leg of the LED. The

other leg of the resistor is attached with the

blue lead to Pim2. The red lead connects the

other leg of the LDR to Pin1. There is no point

in adding a push switch to the system as we

can use button A, say, instead.

So we just need a very small modification to

the program. Of course, if you wanted to market your

device you would probably like to put all the components,

including the micro:bit and battery, in a nicely designed

box for which you could charge a substantial amount!

The 10 well described experiments in the Inventor’s kit give a pretty good feel for how to design and control

your own circuits and devices. There is now an increasing number of other fun projects for use with

micro:bits on the market. Here are a few examples:

Kitronik’s `Line-following buggy’ at £26

DIMM and UFO from Binary Bots (m:b

included, £40 each)

Cheap sensors and accessories are available from

`microbit accessories’, such as head-phone

adaptors, a natty plant watering project and the

chick-bot robot. Using the head-phone adaptor you

can also attach speakers to the m:b. I also

recommend two other devices.

The Kitronik MI:power board costs £5 and provides a

robust casing for the m:b as well as compact power from a coin

battery.

Once you have designed, tested and de-bugged some interesting systems of your own, please write up what

you have done to share it with others. Better still, create a YouTube video and upload it together with your

notes and hex program files to somewhere you can share it. Then send the links to your friends.

Happy tinkering!

https://www.kitronik.co.uk/5604-line-following-buggy-for-the-bbc-microbit.html
https://www.binarybots.co.uk/dimm-the-robot
https://www.binarybots.co.uk/binarys-ufo
http://microbit-accessories.co.uk/shop
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-learning.co.uk/bbc-microbit-plant-watering/
http://microbit-accessories.co.uk/shop/robot/chickbot-robot-kit/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html

